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Symbols

A set of arcs in a directed graph

a(i,j ) n-tuple of lengths for arc (i, j)

cj jth length in an n-tuple

f(i) factoring arc of node i

fi(J) ith factoring arc of node j

G directed graph

(i, j) arc with origin node i and destination node j

indegree(i) number of arcs entering node i

k(i, j) constant length for arc (i, j)

L(i, j) particular length for arc (i, j)

m number of arcs in the network

N set of nodes in a directed graph

n number of nodes in the network

outdegree(i) number of arcs leaving node i

PO probability function

P(i,j) probability distribution for the lengths of arc (i, j)

Sj subnetwork j

s source node

t terminal node

_, number of factoring arcs

w(i) number of subnetworks generated by factoring on node i

I(i, J)l number of lengths for arc (i, j)
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Abstract Although techniques for deterministic network

In this report, the problem of finding the distribu- analysis are widespread and applicable to large-scale
tion of the shortest path length through a stochas- networks (ref. 2), this is not the case for the analysis
tic network is investigated. A general algorithm is of stochastic networks, where the behavior of the net-
developed for determining the exact distribution of work components is governed by some random pro-
the shortest path length. The algorithm is based cess. The most straightforward approach for investi-
on the concept of conditional factoring, in which a gating the stochastic shortest path problem involves
directed, stochastic network is decomposed into an enumeration of all possible states of the network. In
equivalent set of smaller, generally less complex sub- general, if the network contains m arcs and each arc
networks. Several network constructs are identified can take on k values, there would be k m states of the

network that must be analyzed. This approach is ob-and exploited so that the computational effort re-
quired to solve a network problem is significantly less viously computationally infeasible even for relatively
than that required by complete enumeration. This small networks. Thus, current analysis methods have
algorithm can be applied to two important classes been largely confined to approximation, simulation,
of stochastic path problems: determining the crit- and bounding techniques (refs. 3 to 7).
ical path distribution for acyclic networks and the Since the utility of a network model critically de-
exact two-terminal reliability for probabilistic net- pends on the suitability of its assumptions, a general
works. Computational experience with the algorithm model that does not impose restrictions on the dis-
has been encouraging and has allowed the exact so- tributional form of the network components is desir-
lution of networks previously analyzed only by ap- able. This report considers a broad class of stochastic
proximation techniques, networks with the following characteristics: (1) arc

values (length, duration, cost, etc.) are discrete ran-
Introduction dom variables, (2) these random variables are sta-

tistically independent, and (3) nodes do not fail.
In general, network analysis involves the study of These assumptions greatly increase the tractability

systems that can be modeled in terms of nodes and of the problem while preserving the model's realism
arcs connecting certain pairs of nodes. Quantitative by incorporating the random nature of the problem
information, such as length, reliability, or time to (ref. 8, p. 455). Statistical independence is commonlycompletion, may also be associated with the arcs. For

assumed because it reduces the computational re-example, figure 1 shows a simple six-node network
quirements associated with most solution approaches.

representing possible shipping routes from a factory Additionally, there are no assumptions, such as sym-(node A) to a warehouse (node f). The arcs of
metry of the nodes or arcs, imposed on the architec-

this network represent highway routes with their ture of the networks.

associated mileage given as the arc lengths. This report considers the specific problems of

2_ 6 finding the distribution of the length of the shortest

or longest (i.e., critical) path through such a stochas-
tic network. The arcs of the network assume random

(,_3 4 lengths, which could represent, for example, the du-

%.

_)_ ration in traversing a communication link or the cost

x::Kx6 _ of completing a given function. In real-world set-
tings, these values are most realistically viewed as

2 random variables, rather than as fixed determinis-
tic parameters. Thus, the state of the network de-

Figure 1. Elementaryshipping network, pends on the state assumed by each arc. It follows
A commonly encountered problem in such a net- that the shortest (or longest) path through the net-

work is finding the shortest path from the factory work is a function of the random arc lengths; hence,
to the warehouse. More generally, shortest path cal- path length can be characterized by a probability
culations are found to be valuable in analyzing the distribution.

behavior of various large-scale distribution networks, The objective of this report is to present a gen-
such as complex telecommunications processes, dis- eral algorithm for determining the exact distribu-
tributed computer architectures, and even lifeline tion of the shortest path length in a directed, sto-
systems subject to seismic risk (ref. 1). The im- chastic network. This algorithm has applications to
portance of these applications requires that efficient two important classes of stochastic path problems:
techniques and tools be developed to aid in the net- determining the longest, or critical, path distribu-
work analysis process, tion for acyclic networks and the exact two-terminal



reliability for probabilistic networks. The structure connecting a node to itself. In figure 2, arcs (C,B),
of the paper is as follows. In the next section, the (B,D), and (D,C) form a cycle. In general, the
necessary notation and basic terminology are defined, networks treated here are allowed to contain cycles
The structural decomposition technique is described except in the special case of longest path calculations.
in the third section, and it is applied to solving the In calculating the length of the longest path through
critical path and two-terminal reliability problems a network, the underlying graph must be acyclic since
in the fourth section. Several network examples are cycles in a graph would lead to a longest path of
given in this section. A summary of the findings in- infinite length.
cluding the limitations of the approach is presented To incorporate information about the random be-
in the last section, havior of the arcs, each arc is assigned a finite n-tuple

of nonnegative integer values, indicating, for exam-
Notation ple, lengths or durations. The n-tuple of arc lengths

To facilitate the discussion of probabilistic net- "for arc (i,j) is denoted a(i,j), and the number of
works, some basic terminology and notation are first lengths associated with arc (i,j) is denoted I(i,j)l.
introduced. A probabilistic network is modeled us- For each arc (i,j), there is also a corresponding dis-
ing a directed graph G = (N, A), where N is a set crete probability distribution for the arc lengths and
of nodes, representing, for example, warehouses or this is denoted P(i,j). A particular length assumed
communication centers in the network, and A is a by arc (i,j) is denoted L(i,j). Suppose the length
set of arcs, representing traffic routes or communica- of arc (B,D) in figure 2 is uniformly distributed on
tion buses, connecting certain pairs of nodes. An arc the interval [6,9]. Then the discrete n-tuple of arc

(i,j), where i and j are elements of N, is defined to lengths is represented by I(B,D)] = 4 and a(B,D) =
be a directed link from the origin node i to the desti- < 6, 7, 8, 9 >. The corresponding probability distri-

nation node j. If more than one arc connects a pair of bution is given by P(B,D) = < 0.25, 0.25, 0.25, 0.25 >,

nodes, the arcs are denoted with different numbered and P[L(B,D ) = 8] -----0.25. Note that using dis-
superscripts. For example, the two arcs spanning crete probability distributions significantly increases
nodes D and E in figure 2 are denoted (D,E)1 and the tractability of the problem in comparison with
(D,E) 2. Since we are concerned only with the short- continuous distributions. Methods for discretizing a
est (or longest) path between two given nodes, we continuous distribution, as shown in Dodin (ref. 3),
consider only graphs with one source node denoted are available when the arc behavior is described by a
by s, which has only outgoing arcs, and one terminal continuous distribution.
node denoted by t, which has only entering arcs. Fig-

ure 2 shows a directed graph with source node A and Structural Reduction Techniques
terminal node E. The indegree of node i, indegree(i),
is the number of arcs entering node i, and the outde- In this section, a graph-theoretic procedure for
gree of i, outdegree(i), is the number of arcs leaving i. determining the distribution of the shortest path
For each of the networks considered, indegree(s) = 0 length through a stochastic network is described.
and outdegree(t) = 0. In figure 2, indegree(C) = 2 The objective of the approach is to apply certain
and outdegree(C) = 1. conditioned reductions to a given network until the

network is reduced to an equivalent (with respect to
finding the distribution of the shortest path length)
network having only two nodes. The arc connecting
the two nodes in this reduced network provides the
distribution of the shortest path length in the original

s It network.
In this report, two classes of structural reductions

are applied to stochastic networks. The first class of

12 reductions represent fundamental simplifications to
the topology of the network including the series and
parallel reductions. The second class of reductions

Figure 2. Directed graph. are based on the concept of local "factoring." The
A path in the graph from node i to node j is basic difference between the two classes is that the

defined as an ordered sequence of arcs connecting fundamental reductions yield one smaller equivalent
the two nodes. For example, one possible path network. Local factoring, on the other hand, gen-
from node A to node E in figure 2 is through arcs erates an equivalent set of subnetworks to be solved.
(A,B) and (B,E). A cycle is a special type of path Local factoring uses the divide and conquer ideology:



the original problem that is difficult to solve is de- a(A,C) = <2,3,4,5,6,7,8,9>
composed into successively smaller problems that are (_ _
easier to solve. Each type of reduction is discussed M.D'

more fully in the following subsections. P(A,C)= <.05,.1 ,.15,.2,.2,.15,.1 ,.05>

Fundamental Reductions Figure 4. Reducedseriesconstruct.

The fundamental reductions can be applied to Two or more arcs that connect the same pair of
three basic constructs present in a network: series, nodes constitute a parallel construct. Figure 5 shows

parallel, and figure-eight. The term construct is a parallel construct where for arc (A,B) 1, a(A,B)I =

used throughout this discussion to describe specific < 2, 3, 5 > and p(A,B)I = < 0.25, 0.25, 0.5 >, the
configurations of nodes and arcs that exist within a distribution on arc (A,B) 2 is uniform on [0,3] andnetwork architecture. Each fundamental reduction

the distribution on arc (A,B) 3 is uniform on [2,3].
simplifies the given network graph by decreasing the Note that the uniform distribution was used in many
number of nodes or the number of arcs (or both), examples simply for ease of illustration. In general,

One of the most easily recognizable constructs the same reduction techniques apply for any discrete
within a directed graph is the series construct. A distribution.
series construct exists when some node B in the
graph is the intermediate node between exactly two
other nodes; that is, when indegree(B) -- 1 and a(A'B)I = <2,3,5> p(A,B)I = <.25,.25,.5>

°utdegree(B) = 1" Figure 3 gives an example °f _ 2_

a series construct in which the discrete distribution 0,1,2,3> p(A,B)2= <.25,.function on arc (A,B) is uniform on [0,3] and the
discrete distribution function on arc (B,C) is uniform
on[2,6].

G a(A,B) =<0,1,2,3> a(B,C) = <2,3,4,5,6>_%fB") _/_") a(A,B)3= <2,3> p(A,B)3= <.5,.5>

P(A,B) = <.25,.25,.25,.25> P(B,C)= <.2,.2,.2,.2,.2> Figure 5. Parallel construct.

Figure 3. Seriesconstruct.
The difference between calculating the shortest

Since any path through node B must include arcs and longest path lengths through a network mani-
(A,B) and (B,C), these two arcs can be replaced fests itself in reducing the parallel construct. For
by a single arc between nodes A and C. The set any given realization of a stochastic network that
of lengths for the replacement arc (A,C) is the set contains this construct, the shortest or longest path
of all possible additive combinations of arc lengths contains at most one of the parallel arcs shown in
chosen from a(A,B ) and a(B,C ). For our example, figure 5. When finding the shortest (longest) path
L(A, C) = 3 occurs with a positive probability since through such a deterministic realization, only an arc
the combinations L(A, B) = 0 and L(B, C) ---3 and having the minimum (maximum) length among these
L(A, B) = 1 and L(B, C) = 2 are possible states of parallel arcs is considered for the shortest (longest)
that construct. Moreover, because of the statistical path. It follows that the set of parallel arcs can be
independence of arc lengths associated with distinct replaced by a single arc (A,B), whose arc lengths rep-
arcs, resent the minimum (maximum) lengths from all pos-

sible combinations of arc lengths of the parallel arcs.
P[L(A, C) = 3] = P[L(A, B) = 0]P[L(B, C) = 3] One possible combination of arc lengths in the exam-

+ P[L(A, B) = 1]P[L(B, C) = 2] ple is L(A, 8) 1 = 5, L(A, 8) 2 = 2, and L(A, 8) 3 = 3.
When reducing this construct with respect to finding= (0.25)(0.2) -t- (0.25)(0.2) -= 0.1
the shortest path length, min(5,2,3) = 2 is included

More generally, those lengths in the set a(A,C) that in a(A,B). For this particular combination,

occur in several ways are denoted only once in a(A,C) P[L(A, B) ! = 5]P[L(._, B) 2 = 2]P[L(A, B) 3 = 3]and the corresponding probability is the sum of the
contributing probabilities. The reduced construct, = 0.0625
which corresponds to the discrete convolution of the which contributes toward the overall probability
arc distributions on (A,B) and (B,C), is shown in P[L(A, B) = 2]. Specifically, when considering the
figure 4.
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shortest path length for this example,

P[L(A, B) = 2] -- _ PIn(A, 8) 1 -- 2]P[L(A, B) 2 = j]P[L(A, 8) 3 -- k]
j, k>2

+ _ P[L(A, B) 1 = jIP[L(A, B) 2 = 2]P[L(A, B)3 = k]
j>2
k_>2

+ E P[L(A, B) 1 = j]P[L(A, B)2 = k]P[L(A, B)3 = 2]
j, k>2

----0.125 + 0.1875 + 0.09375 = 0.40625

again using the statistical independence of arc lengths. When considering the longest path length through this
example,

P[L(A, B) = 2] = _ P[L(A, 8) 1 = 2]P[L(A, 8) 2 = j]P[L(A, B) 3 = k]
j, k_<2

+ E P[L(A, B) 1 = j]P[L(A, B)2 -- 2]P[L(A, B) 3 = k]
j<2
k<2

+ E P[L(A, B) 1 = j]P[L(A, B) 2 ----k]P[L(A, B)3 = 2]
j, k<2

= 0.09375 . 0 . 0 = 0.09375

More generally, any length in the set a(A,B) that reduced two-node network. For example, consider
arises from several combinations is represented only the network in figure 7, where the distribution on

once in a(A,B) and its corresponding probability is each arc is uniform on [1,2]; that is, a(i,j ) = <1,2>
the sum of the appropriate individual probabilities, and P(i,j) = < 0.5, 0.5 > for each (i, j) in the graph.
By applying this strategy, the parallel construct in By applying only series and parallel reductions, this
figure 5 can be replaced by one of the single arcs network can be reduced to the equivalent shortest
shown in figure 6, depending on whether the shortest path network shown in figure 8.
or the longest path length is of interest.

Distribution of
The series and parallel reductions are well-known shortest path length

and have applications in many optimization prob-

lems. Martin (ref. 9) was the first to apply these (_ a(A,B)-- <0,1,2,3,5> _@
reductions to the stochastic shortest path problem. P(A,B)= <.25,.25,.40625,.09375,0>
By using these two reduction steps, more complex
networks can sometimes be reduced to a single arc
between the source and terminal nodes. In fact, Distributionof
a series-parallel network is defined to be any net- longest path length

work that can be simplified via series and parallel (_ a(A,B)= <0,1,2,3,5>reductions to an equivalent two-node network, that _
is, equivalent in the sense that the distribution of P(A,B)= <0,0,.09375.40625,.5>
the shortest (or longest) path length for the origi-
nal network is exactly the same distribution for the Figure 6. Reducedparallel constructs.

4



the shortest path, the only remaining paths of inter-
a(i,j) = <1,2> _ O est are (A,B)_(B,C) and (C,B)-*(B,A). The figure-
P(i,j) = <.5,.5> eight construct is then simplifed by replacing arcs

(A,B) and (B,C) with a single arc (A,C), and by re-

placing arcs (C,B) and (B,A) with a single arc (C,A).
The lengths and probabilities of the new arcs are de-
termined in the same manner as with series reduc-

tions. For example, the set of lengths for (A,C) is the
set of all possible additive combinations of lengths
from (A,B) and (B,C). The simplified figure-eight as-
sumes the form shown in figure 10.

Figure 7. Series-parallelnetwork, a(A,C )

(_) a' s,t) = <3'4'5'6> _) (_ _
P(s,t)= <.316406,.529297,150879,.003418>

_a(c,A) _
Figure 8. Reduced series-parallel network.

Figure 10. Reduced figure-eight construct.
The last fundamental reduction, called a figure-

eight reduction, while less well-known than the se- The advantage of using these fundamental reduc-
ries and parallel reductions, incorporates the same tions is that they yield a single equivalent network
approach to simplifying a network structure into an that has a smaller number of arcs and possibly fewer
equivalent, less complex structure. The figure-eight nodes. Hence, determining the distribution of the
construct, shown in figure 9, is found only in cyclic shortest path length for this reduced network is eas-
networks. In this construct, the center node B in ier. In fact, these fundamental reductions have been
the structure must have exactly indegree(B) = 2 and previously applied in calculating network reliability
outdegree(B) -- 2 and must be connected to exactly (ref. 10). However, many complex network archi-
two other nodes, labeled A and C in figure 9. Specif- tectures cannot be simplified via series and parallel
ically, B has one incoming arc from node A and one reductions. The contribution made to the stochastic
from C; both node A and node C have one incoming shortest path problem through this investigation is
arc from B. the development of a new reduction technique, called

conditional factoring, that, like the fundamental re-
a(A,B) a(C,B) ductions, is based on the configuration of the nodes

_ _ _ and arcs in the network. Conditional factoring of-

fers additional possibilities for simplifying a given
network.

_.-a(B,A)_ _a(B,C)_-
Conditioned Reductions

Figure 9. Figure-eightconstruct. For a stochastic network whose architecture can-
Since the figure-eight construct occurs only in not be simplified by applying series and parallel

cyclic networks, only the shortest path from the reductions, most exact methods for finding the dis-
source node to the terminal node is of interest. In tribution of the shortest path length depend on corn-
this construct, four possible subpaths exist through plete state-space enumeration (ref. 2) or enumeration
node B: (A,B)---*(B,A), (B,C)--*(C,B), (A,B)--_ of all cutsets or possible paths (refs. 7, 11, and 12).
(B,C), and (C,B)_(B,A). Any source-to-terminal In simplifying a construct by complete enumeration,
(s-t) path through the network that contains the sub- all possible combinations of arc lengths for all arcs in
path (A,B)--*(B,A) must be at least as long as the that construct are considered. For example, given
shortest path through the network. Since this sub- the network construct in figure 11, if I(i,j)[ = 3
path does not affect the length of the shortest path, for each of the 7 arcs in that construct, 37 ----2187
this subpath is irrelevant to the distribution of the states of that construct would be considered in solv-
shortest path length and can be ignored. Similarly, ing the network. If I(i,j)[ = 10 for each arc in that
the subpath (B,C)---,(C,B) can safely be ignored. By construct, 107 = 10 million states of that network
eliminating these two paths from the set of possi- are considered. In general, complete enumeration
ble paths through node B that could be included in is computationally infeasible except for very small
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networks where the arcs can assume only a minimal used more than once in forming the new arcs of the
number of lengths, reduced construct are called factoring arcs. A unique

subnetwork is defined for each combination of lengths

among the factoring arcs, and this eliminates any de-

pendencies among the subnetworks. In this section,
the concept of conditional factoring is illustrated by
applying it to four special network constructs.

The first construct to be introduced is the fan
construct. A deterministic fan construct with central
node B is shown in figure 12. Note that in any
deterministic construct, the length of each arc is

Figure 11. Partial networkstructure, known with certainty; that is, the arc values are

In this investigation, some constructs that are not random variables. In general, a fan construct
prevalent in many network architectures were iden- with central node B has the following characteristics:
tiffed that can be simplified without complete enu- (1) B is any node in the network except the source
meration. The technique used to simplify these con- or terminal node, and (2) either indegree(B) -- 1 or
structs, called conditional factoring, is based on the outdegree(B) = 1 (if both are 1, then B is the central
idea that it is sufficient to consider only a specific sub- node in a series structure). If indegreeCB) -- 1,
set of arcs within certain network constructs in order the incoming arc to node B is called the factoring

to generate an equivalent, simplified representation, arc (since it is the only arc in the construct used
Thus, the conditional reductions can significantly de- more than one time in reducing the construct) and
crease the computational requirements necessary to is denoted f(B). Similarly, if outdegree(B) = 1, the
solve many networks and, hence, allow the exact so- outgoing arc from node B is called the factoring arc
lution of a larger class of networks. For example, if and is denoted f(B). In figure 12, the factoring arc
I(i,j)] -- 3 for each arc in figure 11, only 9 states of is f(n) -- (A,B).
that construct are needed to solve the network using
conditional factoring; and, if [(i,j)[ -- 10, only 100
states are necessary. In general, conditional factor- _2
ing can be applied to any node within the network

except the source or terminal nodes. However, con- 4 _3ditional factoring reduces the computational effort 6
only when it is applied to the four special constructs
described in this section. For all other constructs,
conditional factoring is believed to be equivalent to
complete enumeration. Figure 12. Deterministic fan construct.

The concept of conditional factoring is similar to In a deterministic construct, each arc (i, j) has
the factoring theorem, which is used for computing a constant length, say k(i,j). Thus, within that
network reliability (ref. 13), except that factoring construct, [(i,j)[ = 1 and P[L(i,j) -- k(i,j)] = 1.
is based on a specific node in the graph instead of If two arcs, CA,B) and (B,C), with constant lengths
an arc. The conditioned reductions are performed are combined, the length of the resulting arc is the
by identifying a specific construct centered around a sum of the two arc lengths. Thus, the new length
node, called the central node, in the network. The L(A, C) = k(A, B) + k(B, C) is also a constant and
structure of this construct is simplified by removing has corresponding probability of 1.
the central node and completing all possible paths A fan construct is graphically simplified by elimi-
through that central point of that construct. In con- nating the central node and completing each possible
trast to the fundamental reductions, conditional fac- path (relative to the graph) through that central con-
toring generates a set of independent subnetworks to nection point. In a deterministic fan construct, the
be solved, where each subnetwork incorporates the length of the factoring arc is added to the lengths
new_ reduced structure into the overall network ar- of each of the other arcs connected to the central
chitecture. These subnetworks are generally smaller node. For example, arc CA,C) in figure 13 is formed
in size (i.e., have fewer nodes) and involve less compu- from arcs (A,B) and (B,C), arc (A,D) is formed from
tational effort to solve. The lengths of the new arcs in arcs (A,B) and (B,D), and arc (A,E) is formed from
the subnetworks are defined by conditioning on the arcs CA,B) and (B,E). The length of each new arc
arcs that are used more than once in defining new is accordingly the sum of lengths of its component
arcs in the reduced construct. These arcs that are arcs; and, since each arc has a constant length, the

6



probability associated with each new arc is 1. For the factoring arc) are combined with arcs with random
network in figure 12, this reduction process yields the lengths. When an arc with a constant length is com-
network in figure 13. bined with an arc whose length is governed by a dis-

P[L(A,C)=6] = 1.0 crete distribution D, the length of the resulting arcis a random variable governed by D.
6 The fan construct shown in figure 14 can be de-

_70_ P[L(A,D)=7] 1.0 composed into an equivalent set of two independent

subnetworks, shown in figure 15, since If(B)[ = 2.
The first subnetwork S1 is constructed by assuming

L(A, B) ----1, and the second subnetwork $2 is con-
P[L(A,E)=I 0] = 1.0 structed for L(A, B) -- 2. The probability of obtain-

Figure 13. Reduceddeterministic fan construct, ing subnetwork 1 is P(S1) = P[L(A, B) = 1] = 0.4,
and, similarly, the probability of obtaining subnet-

The concept of conditional factoring applies when work 2 is P(S2) -- P[L(A, B) = 2] -- 0.6.
the length of each arc is assumed to be a random vari- The next three reductions focus on constructs
able. To illustrate, consider the same graph shown in with a central node B where either indegree(B) = 2
figure 12 but allow each arc to be a random variable, or outdegree(B) -- 2. Additionally, each of these
Figure 14 shows this construct where each arc can constructs contains at least one simple cycle of size
take on values in the n-tuple <1, 2> with correspond-

two (a cycle involving only two nodes) involving the
ing probabilities < 0.4, 0.6 >. Such a stochastic fan central node B.
construct centered at node B is decomposed based on
the distribution of lengths on the factoring arc f(B). The first of these constructs, shown in fig-
In figure 14, f(B) = (A,B) just as in figure 12. ure 16, is called the loop construct with central

node B. In general, a loop construct with central

a(A,B) = a(B,C) = a(B,D) =a(B,E) = <1,2> node B has the following characteristics: (1) inde-
gree(B) = 2, (2) outdegree(S) = 2, and (3) S and

P(A,B)=P(B,C)=P(B,D)= P(B,E) = <.4.6> some other node D form the only cycle of the con-

struct, which is a simple cycle. The possible paths

through this structure that are considered for the
shortest path are then (A,B)---+(B,D), (A,B)---*(B,C),

Q _ and (D,B)---*(B,C). The only other path through
the structure, (A,B)--+(B,D)---+(D,B)---_(B,C) is never
considered as part of a shortest path since a subset of
that path, (A,B)---+(B,C), is always at least as short.
As a result, we can replace each of these three paths

Figure 14. Stochasticfan construct, with an equivalent arc, as shown by the reduced con-
Since the length of f(B) is now a random variable, struct shown in figure 17.

a distinct subnetwork is generated for each length in Since the arcs (A,B) and (B,C) are used more

hi(B). The number of subnetworks created by fac- than once in defining the new arcs in the reduced
toring on node B is denoted w(B). For the stochastic construct, the lengths of both of these arcs must
fan construct, the number of subnetworks generated be considered when generating subnetworks. Hence,
is equal to the number of possible lengths for the arcs (A,B) and (B,C) are factoring arcs for this struc-
single factoring arc; that is, w(B) ----]f(B)]. To den- ture and are denoted fl(B) and f2(B), respectively.
crate each subnetwork Sj, for j = 1, 2, ..., w(B), In general, the number of subnetworks produced by
the following steps are taken: (1) let f(B) take on any conditioned reduction is the product of the dis-

a constant length cj, where cj is the jth length in tribution sizes for each factoring arc. For a loop con-

af(B); (2) eliminate node B from the original con- struct, a distinct subnetwork is produced for each
struct; (3) complete all possible paths through the combination of lengths for the two factoring arcs, so
central point; and (4) define the new arc lengths and w(B) = [fl(B)[[f2(B)[. To generate the subnetwork
the associated probabilities. Sk, where k = 1, 2, ..., w(B), the following steps are

In general, the arc lengths in the reduced con- taken: (1) let the factoring arcs fl(B) and f2(B)
struct are determined by adding the lengths of their take on one of the combinations of constant values
component arcs. In the strictly deterministic con- from afl(B ) and af2(B); (2) eliminate node B from
struct, this is simple since only constant length arcs the original structure; (3) complete all possible paths
are combined. However, in reducing a stochastic through the central point; and (4) appropriately de-
construct, constant length arcs (resulting from the fine the new arc lengths and their probabilities.
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a(A,B) = a(B,C) = a(B,D) = a(B,E) = <1,2>

P(A,B) = P(B,C)= P(B,D) = P(B,E) = <.4,.6>

L(A,B) =/ __II_(A,B) = 2

a(A,C) = a(A,D) = a(A,E) = <2,3> a(A,C) = a(A,D) = a(A,E) = <3,4>

P(A,C) = P(A,D) = P(A,E) = <.4,.6> P(A,C) = P(A,D) = P(A,E)= <.4,.6>

Figure 15. Subnetworksfor the stochastic fan construct.

@ m_B_ m@ L(B, C) = 2 are in $4. These four subnetworks
are shown in figure 18. To simplify the notation in
the following figures, the lengths and probabilities
are displayed in an abbreviated form. In this nota-
tion, the lengths and corresponding probabilities for
each arc appear in the format: <length,probability:

Figure 16. Loop construct, length,probability: ... : length,probability>.

The third construct is a general loop construct

and is shown in figure 19. The general loop construct

with central node B has the following characteristics:
(1) either indegree(B) = 2 and outdegree(B) > 2 or
outdegree(B) = 2 and indegree(B) > 2; and (2) B
together with some node A forms the only cycle of
the construct, which again is a simple cycle. When
the central node is removed from a general loop con-Figure 17. Reduced loop construct.
struct, the number of arcs in each resulting sub-

To illustrate, suppose that in the loop construct network is at least as great as the number of arcs
of figure 16 each arc can take on lengths in the in the original network. For a general loop con-
n-tuple <1, 2> with equal probability. From the first struct with central node B, if indegree(B) + out-
reduction step, four distinct subnetworks are gener- degree(B) = 5, the number of arcs in the reduced
ated where L(A, B) = 1 and L(B, C) = 1 are in $1, construct is the same as in the original construct. If
L(A, B) = 1 and L(B, C) = 2 are in $2, L(A, B) = 2 indegree(B) + outdegree(B) > 5, the reduced con-
and L(B, C) = 1 are in $3, and L(A, B) = 2 and struct contains more arcs than the original.
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Sl

_k <3,1.0> ,_<2,.5:3,.5> indegree(B) = 2

S2 _.5:4,.5>

<3,1.0>

<3,.5:4,.5>

S3 '_.5:3,.5>

<4,1.0> outdegree(B) = 2

_ Figure 19. General loop constructs.<3,.5:4,.5>

_.5:4,.5> Suppose each arc in the general loop structure of
S4 figure 20 can assume an integer length in the n-tuple

< 1, 2 > with equal probability. Then, there would
Figure 18. Subnetworksfor the reduced loop construct, be 7 -- 5 factoring arcs, and w(B) = 25 -- 32 sub-

networks generated in reducing that structure, com-
pared with 26 -- 64 networks that would be gener-

The reduction of a general loop construct is illus- ated using complete enumeration. Two of the subnet-
trated in figure 20. In this case, the reduced con- works are shown in figure 21. In these subnetworks,
struct has one more arc than the original construct, only arc (C,A) has a nonconstant distribution. This
Note that in reducing the general loop construct each is because (C,A) is formed by combining arcs (B,A)
arc in the original structure is used more than once and (C,B), and arc (B,A) is the only arc in the struc-
except for arc (B,A). As a result of this commonality, ture that is not a factoring arc of node B.
each arc in the original general loop construct must
be a factoring arc except for arc (B,A). The number The last conditioned reduction construct, shown
of factoring arcs 3, is thus 3, = indegree(B) . out- in figure 22, is called a double loop construct. Like
degree(B) - 1 and the number of subnetworks gen- the general loop construct, either the indegree or
erated is w(B) = Ifl(S)llf2(B)l... IfT(S)l. As in the the outdegree of the central node must be 2. The
fan and loop constructs, the basic steps to gener- double loop construct, though, must contain exactly
ate subnetwork Sk, where k -- 1, 2, ... w(B), are two simple cycles connected to the central node.
as follows: (1) let the factoring arcs fi(B), where In general, a double loop construct with central
i = 1, 2,...,-),, take on one of the combinations of node B has the following characteristics: (1) either
constant lengths in afi(B); (2) eliminate node B from indegree(B) -- 2 and outdegree(B) > 2, or out-
the original structure; (3) complete all possible paths degree(B) = 2 and indegree(B) > 2; and (2) B forms
through the central point; and (4) appropriately de- exactly two simple cycles: one with some node A and
fine the new arc lengths and probabilities, one with some other node C; see figure 22.
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.When the double loop construct is reduced, two <2,.5:3,.5>
of the arcs in the original network are used only one
time, such as arcs (B,A) and (B,C) for the construct
with indegree(B) = 2 and arcs (A,B) and (C,B) for
the construct with outdegree(B) = 2 in figure 22. As <2,1
with all conditioned reductions, each arc that is used
more than once in creating the reduced construct is

a factoring arc. Hence, for any double loop construct <2,1.0>
with central node B there are V = indegree(B) + out-
degree(B) - 2 factoring arcs, and the total number <2,1.0>
of subnetworks is w(B) = Ifl(B)llf2(B)l... If_(B)l. I.
The steps used to generate each subnetwork of a
double loop construct are the same as those used
for the other conditioned reductions. An example of
the graphical reduction of a double loop construct

is shown in figure 23. As with the general loop S 1
construct, removing the central node of a double
loop construct can produce more arcs in each result-
ing subnetwork than are present in the original con-
struct. When indegree(B) + outdegree(B) > 6, more <2,.5:3,.5>
arcs are present in the reduced construct than in the
original. Some of these additional arcs, though, may

lead to further parallel reductions. <2,1

<2,1.0>

<3,1.0>

S2
Figure 21. Two subnetworks for the reduced general loop

construct.

Conditioned Reductions and Shortest
Path Calculations

-_ The rules for simplifying a special construct
:]

present within a stochastic network via conditional
factoring follow a general scheme. Namely, once one
of the constructs discussed in the preceding section
has been identified, the following steps are taken to
generate the desired subnetworks:

1. Identify all factoring arcs for that construct.
2. List all possible combinations of lengths for

the factoring arcs. Each combination defines
a distinct subnetwork.

3. For each combination of lengths, compute the
product of the probabilities associated with

Figure 20. Reduction of general loop construct, each length in the combination. Because of
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the statistical independence assumption, this
product is the probability of that subnetwork
occurring.

4. Remove the central node from the construct

and graphically complete all possible paths
through the construct. (Note that any loop
arc (i, i) formed can be eliminated from that
subnetwork structure.)

5. Add the lengths of the component arcs to get

indegree(B) = 2 the lengths of the new arcs in the subnetworks.
6. Define the probabilities for the new arcs. An

arc with a constant length has probability 1.
When an arc with a constant length is com-
bined with an arc whose length is governed
by a discrete distribution D, the length of the
resulting arc is a random variable governed
byD.

By following these steps, a network can be decom-
posed into a set of subnetworks that are more easily
solved. To demonstrate how these steps are used to
calculate the exact distribution of the shortest path
length, consider the network shown in figure 24; no-

outdegree(B) =2 tice that this network is not a series-parallel network.
Suppose each arc in figure 24 can take on lengths in

Figure 22. Doubleloop constructs, the n-tuple <1, 3> with equal probability.

Figure 24. Network with loop construct.

In this network, there is a loop construct with
central node B and a loop construct with central
node C. For this example, the choice of central node
is not important, so node B is arbitrarily selected.

_ The heuristic rules used to govern the choice ofwhich node to remove are discussed in a later section.

According to steps 1 and 2 of the decomposition
steps, there will be four subnetworks generated from
the four possible combinations of arc lengths from the
factoring arcs (A,B) and (B,D). These combinations
are L(A, B) -- 1 and L(B, D) = 1 in S1, L(A, B) -- 1
and L(B, D) = 3 in $2, L(A, B) = 3 and L(B, D) = 1
in $3, and L(A,B) = 3 and L(B,D) -- 3 in $4.
The four subnetworks are shown in figure 25. From

Figure 23. Reductionof a double loopconstruct, step 3 of the decomposition steps, the probability
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associated with each subnetwork is the product of the Notice that each subnetwork in figure 25 can now
probabilities corresponding to the constant lengths be simplified to an equivalent two-node network, with
used to define that subnetwork. In figure 25, respect to finding the distribution of the shortest

path length, via series and parallel reductions. These
P(S1) = P[L(A,B) -- 1]P[L(B,D) -- 1] = 0.25 simplified networks are shown in figure 26.

P(S2) = P[L(A, B) = 1]P[L(B, D) = 3] -- 0.25

P(S3)-- P[L(A,B)-- 3]P[L(B,D) = 1]--0.25

P(S4) = P[L(A,B) = 3]P[L(B,D) ----3] = 0.25 S1 O <2,1.0> _

<2,1.o> <2,.25:3,. 125:4,.625>

(_,.5:4,.5> ._ S2 (_ _(_)
\ _<2,.5:4,.5>/"

' _" / <2,.25:3,.125:4,.625>

$1

<4,1.0>

_<2,.5:4,.5> _ S4
\ _<4,.5:6,.5>/"

<1 5'_x'35_>_/<1,.5.3,.5/ >

S2_ Figure 26. Reducedsubnetworks.

<4,1.0>

(_,.5:6,.5> /_ The of the shortest

distribution path length
_<2,.5."4,.5>/p through the original network in figure 24 is calculated

<1,.5:3,. ,.5:3,.5> as shown in table 1. The distribution for the origi-
nal network is found by combining the shortest path

$3 distributions in each subnetwork Si using as weights
the appropriate P(Si); that is, for each subnetwork,

<6,1.0>_- the probability of each path length is multiplied by
'_4,.5:6..5> //" "_" the probability of that subnetwork occurring and the
\ _<4,.5:6,.5>/"

, _ _ / resulting probabilities are summed across all subnet-<1 5 3 ,.5.3,.5> works. Note that the columns for the distributions in

$4 table 1 all sum to 1.0 since the shortest path length
distribution for each individual subnetwork must sum

Figure 25. Subnetwork structures for the reduced network, to 1.0.

Table 1. Distribution of Shortest Path Length in the Network With a Loop Construct

Probability in final subnetworks
Length of S1 $2 $3 $4 Probability for

shortest path P(S1) = 0.25 P(S2) = 0.25 P(S3) = 0.25 P(S4) = 0.25 original network
2 1.0 0.25 0.25 0.25 0.4375
3 0 .125 .125 0 .0625
4 0 .625 .625 .5 .4375
6 0 0 0 .25 .0625
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Total Factoring new subnetwork, there is a simple loop construct with
central node C, a general loop construct with central

Although the special constructs required for the node F, and a double loop construct with central
basic and conditioned reductions are found in many node E. Since there are fewer factoring arcs associ-
network configurations, realistic network configura- ated with the simple loop construct than with the
tions oftem do not, on initial inspection, contain any general or double loop constructs, node C is chosen
of these constructs. In these cases, the factoring ap- for factoring. After factoring on node C, the sub-
proach and the steps for conditioned reductions can networks whose structure is shown in figure 30 are
still be applied; however, all arcs that are incident generated. After performing all appropriate parallel
with the node chosen for removal are now factoring reductions, these subnetworks have the same graphi-
arcs. That is, all possible combinations of arc lengths cal form as the example given in figure 24 and, thus,
around a central node are completely enumerated. can be solved in the same manner.
If total factoring is required for each node of the
network except for the source and terminal nodes,
this approach is equivalent to complete enumeration,
which, as discussed earlier, is computationally infea-
sible for all but the smallest networks. Fortunately,
applying total factoring on a node in a complex net-
work often yields subnetworks that can be simplified
via the basic and conditioned reductions.

For example, the network shown in figure 27 does
not contain any of the special constructs discussed in
the previous sections. Figure 29. Second subnetwork structure after reduction of

general loop construct.

Figure 27. Network with no special constructs.

To demonstrate total factoring, let node B be the
central node to be removed from the network. The

subnetworks generated by removing node B each Figure 30. Third subnetwork structure after reduction of
have the form shown in figure 28. simple loop construct.

Determining the Shortest Path Length
Distribution

In previous sections, the distribution of the short-

est path length has been found for series-parallel net-
works and for networks where only one level of sub-
networks needs to be generated. For rdany networks,
such as the one given in figure 27, reductions must be
repeatedly applied before the original network is sim-
plified to an equivalent two-node network. That is,
each generated subnetwork can itself be reduced by

Figure 28. Subnetworkstructure after total factoring, further application of conditioned and fundamental
After performing a parallel reduction on the arcs con- reductions.
necting nodes A and C, we can now identify a gen- In general, the final subnetworks that simplify
eral loop construct with central node D in this sub- to two-node structures (weighted by their associated
network structure. When node D is removed, the probabilities of occurrence)are the only contributors
new subnetwork shown in figure 29 results. In this to the overall distribution of the shortest path length
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in the network. Hence, for each possible subnetwork, bility of that subnetwork occurring. Then, for ev-
it is important to keep track of the probability of ery possible length, the contributing probabilities are
that subnetwork occurring. Suppose a conditioned summed across all leaf subnetworks. This yields the
reduction is applied to a network G, and several distribution of the shortest path length in the original
subnetworks, denoted Sk, are generated. Then, by network.
the statistical independence assumption, the proba- This process of calculating the distribution of
bility of each subnetwork Sk is calculated according the shortest path length has been implemented in
to step 3 in the general reduction procedure. Now a computer program. The program is written
suppose that another conditioned reduction is used in FORTRAN 77 and is implemented on a Digi-
to simplify subnetwork Sk and additional j subnet- tal Equipment Corporation VAXstation 3200 work-
works, denoted Sk,j, are generated. The current sta- station. The algorithm for determining the distribu-
tus of the computations can be represented by the tion of the shortest path length is given as follows:
tree depicted in figure 31. The shaded leaves of this
subnetwork tree represent the currently unresolved Input network data and store it

subnetworks. Use all applicable basic reductions to simplify the
network

Level 1 If the network has been completely reduced

then
Level 2

Store the distribution information (note:
this is the complete distribution of the

Level 3 shortest path length)

else
Figure 31. Subnetwork tree.

Identify a node to factor on
The probability of the jth subnetwork of Sk occur-

ring is P[Sk,j] = P[Sk,jISk]P[Sk], where P[Sk,jlSk] Apply the appropriate reduction, generate
is calculated according to step 3 in the decompo- the subnetworks, and place them in a
sition procedure. This process of generating new stack
subnetworks from existing subnetworks continues un- While there are subnetworks in the stack
til a generated subnetwork simplifies to a two-node

Remove the subnetwork on the top ofstructure.
the stack

Note that all subnetworks at level 2 of the sub-
Use basic reductions to simplify thenetwork tree have the same graphical structure. The

only differences among these subnetworks are the subnetwork
lengths and probabilities occurring on the arcs. More If the subnetwork has been completely
generally, all subnetworks on the same level of the reduced
subnetwork tree have the same graphical structure. then
So if a conditioned reduction is required to sim-
plify Sk, the same conditioned reduction applies to Store the distribution informa-

S1,5'2, ..., Sk-1. Also, if some Sk,j in figure 31 simpli- tion for that subnetwork
ties to a two-node network without additional condi- else
tioned reductions, each subnetwork on level 3 also
simplifies to a two-node network without generat- Identify a node within the sub-
ing further subnetworks. These characteristics of the network to factor on

subnetwork tree suggest that the reduction algorithm Apply the appropriate reduc-
may be amenable to parallel implementation, tion, generate new subnetworks

To calculate the distribution of the shortest path and place them on top
length in the original network, only the subnetworks of the stack
at the final level of the subnetwork tree are consid-

ered; that is, those leaf subnetworks that simplify to end if condition
two-node networks without further conditioned re- end while condition
ductions. For each leaf subnetwork in the final level,
the probability of each arc length appearing in the end if condition
associated distribution is multiplied by the proba- Print the distribution of the shortest path length.
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The algorithm used to find the distribution of the two-terminal reliability of a network. These two
longest path length is identical except that maximum problems are actually special cases of the stochastic
in place of minimum values are used in computing the shortest path problem.
parallel reductions.

Critical Path Analysis
In theory, this algorithm is valid for an arbitrar-

ily large network. However, the implementation of Although the analysis of the critical path is lim-
the algorithm is limited since the number of subnet- ited to acyclic networks, critical path analysis has
works that must be generated and stored to solve a many applications to scheduling and performance
problem can overwhelm the computational resources problems such as those associated with communica-
available. In general, the size of the subnetwork tree tions networks. To determine the distribution of the
depends on the complexity, number of nodes, and length of the critical path, the structural reductions
size of the distribution of lengths for each arc in the are applied to an acyclic network just as they are
original network. If there are n nodes in the origi- in determining the shortest path except for decom-
nal network, there will be at most n - 1 levels in the posing a parallel construct. Recall that in reduc-
subnetwork tree. If there are k subnetworks gener- ing a parallel construct, the maximum arc lengths
ated during each simplification, then there would be are considered instead of the minimum arc lengths.
a total of 1 + k + k2 + ... + ku-2 = (kn-1 - 1)/(k - 1) For example, consider the network problem presented
subnetworks to solve. However, the maximum num- by Fulkerson (ref. 6). The network has a simple
ber of subnetworks that ever need to be stored is four-node architecture, shown in figure 32, where the

(k-1)(n-1)-(k-2). These are worst-case estimates, length of each arc is uniformly distributed on the

In implementing the algorithm, an effort was interval [0,2].
made to minimize the size of the subnetwork tree by

judiciously choosing the node for factoring. Specifi-
cally, the factoring node i is chosen to fulfill the fol-
lowing criteria:

1. For all nodes j in the current subnetwork,
min[indegree(i), outdegree(i)] <: min[indegree
(j), outdegree(j)].

2. Among all nodes k that satisfy condition 1,
<

3. Among all nodes that satisfy conditions 1 and
2, i is the first node that occurs in the graph. Figure 32. Fulkersonnetwork (ref. 6).

Empirical evidence has shown that in many cases, In this network, two fan constructs can be identi-
choosing the factoring node according to these crite- fled, one centered at node B, since indegree(B) -- 1,
ria results in a smaller total number of subnetworks and the other centered at node C, since outde-
that need to be solved. However, these criteria are gree(C) = 1. The distribution of the longest path
not optimal for all networks. Further research is nec- length through the network has been determined us-
essary to determine whether globally optimal criteria ing the implementation of the algorithm and is given
exist for choosing the order of factoring. In practice, in table 2. From the distribution in table 2, the ex-
the number of subnetworks solved and the maximum pected length of the critical path is calculated to be

3.32510288. In the Fulkerson paper, the lower boundnumber stored have been far fewer than those pr_
calculated by F_lkerson's method is given as 3.22.dicted by the worst-case estimates. The results pre-

sented in the next section demonstrate that a fairly This problem required 3.5 seconds of central process-
modest computational effort is usually required, ing unit (cpu) time to solve for the exact distribution

and four subnetworks were generated.

Applications of the Structural Factoring Another renowned problem, shown in figure 33, is
the crossing network, also referred to as the "wheat-

Approach stone bridge" network, analyzed by Kleindorfer
In this section, the structural factoring approach (ref. 14). Since this network is acyclic, the distri-

is applied to several network problems taken from butions for the length of the shortest and longest
the literature. Two of the more interesting problems paths can be calculated. In his paper, Kleindorfer
associated with network analysis are determining the gives bounds on the cumulative distribution for this
distribution of the longest, or critical, path and the network where each arc assumes a length in the set
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< 1, 2, 3, 4, 5 > with equal probability. By apply-
ing structural factoring to the fan structures in this Table 4. Distribution of Critical Path Length for the
network, the exact distribution of the shortest path Crossing Network Compared With the Kleindorfer
length from node A to node F can be determined. Ta- Cumulative Bounds
ble 3 gives the the distribution of the shortest path
for this network; table 4 shows the cumulative dis-
tribution of the critical (longest) path through the Kleindorfer Kleindorfer
same network as well as the Kleindorfer bounds. Length of lowerbound Cumulative upper bound

critical path (ref. 14) probability (ref. 14)
3 0 0.00000256 0.008
4 0 .00008704 .032

5 0 .00096256 .080
6 0.002 .00601600 .160
7 .014 .02654464 .280

8 .055 .08016640 .424
9 .149 .18496000 .576

10 .312 .34822144 .720
11 .528 .55248640 .840

Figure 33. Kleindorfer crossing network (ref. 14). 12 .731 .74235136 .920

13 .882 .88570624 .968

Table 2. Distribution of LongestPath Length 14 .969 .96935936 .992
for the FulkersonNetwork 15 1.000 1.00000000 1.000

Length of For critical path problems, the expected project
longest path Exact probability duration time, which is the expected length of the

0 1/243 critical path, is often of interest. The expected
1 11/243 project duration was calculated from the exact dis-
2 49/243 tribution of the critical path length to be 11.203136.
3 74/243 Kleindorfer gives a lower bound (LB) of 9.000 and
4 72/243 an upper bound (UB) of 11.358 for this problem.
5 27/243 Shogan (ref. 15) also gives bounds on the expected
6 9/243 project duration for this problem: LB ----10.6 and

UB -- 11.358. Only 3.7 seconds of cpu time were
required to solve this problem exactly.

Since each arc in this network has five possible
Table3. Distribution of Shortest Path Length lengths, the complete enumeration approach would

for the Crossing Network consider 58 = 390 625 possible states of the network
to determine exactly the distribution of the shortest
path length. For each possible state of the network,

Length of the shortest (or longest) path length must be identi-
shortest path Probability fled. In contrast, to solve this problem, the structural

3 0.03064064 factoring approach generated only 31 subnetworks (of
4 .08365312 which 30 were less complex than the original net-
5 .14335488 work). A computer program that implements the
6 .18986496 complete enumeration approach took 57.21 seconds
7 .20426496 of cpu time to execute, and the resulting distribution
8 .16326144 agreed with the one given in table 3. The conditional
9 .10479360 factoring approach is clearly a drastic improvement

10 .05362176 over complete enumeration for determining an exact
11 .02052864 solution.
12 .00505344
13 .00087552 Two-Terminal Reliability

14 .00008448 The translation of the stochastic shortest path
15 .00000256 problem to the two-terminal reliability problem is not
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as obvious. The two-terminal reliability problem is Table 5. Distribution of Shortest
defined relative to a network G in which each arc Path Length for the ShoganNetwork

(i,j) has a given probability p(i,j) of functioning
independent of all other arcs. The two-terminal
reliability of the network is equal to the probability Length of
that there exists at least one path in G from a shortest path Probability

specified node s to a specified node t along which 0 0.3047540654
all arcs are functioning. 2 .2810753843

Now consider a stochastic network G_ involving 4 .2784418939
the same nodes and same arcs as G. Each arc (i,j) 6 .0986955899
in G_ can assume only the lengths 0 and 1, with 8 .0339240387
probabilities p(i, j) and 1 - p(i, j), respectively. If 10 .0028468838
there is a shortest s-t (source to terminal node) path 12 .0002621440
through G_ that has length 0, then there must be
some path in Gt on which all arc lengths are 0.
This directly corresponds to a path in G composed
of all functioning arcs. Similarly, if the network To solve this network for the distribution of the
is functioning, then there must be a path through shortest path length, 1528 subnetworks were gener-
the G_ network that has length 0, and this will ated, but the maximum number of networks stored
be a shortest s-t path. Thus, the probability that by the computer at any given time was 27. Although
the shortest s-t path through G_ has length zero is a large number of subnetworks were generated, this
precisely the two-terminal reliability of the original problem took only 8.19 seconds of cpu time to solve.
network G. There are no architectural restrictions By contrast, it took 6048.89 seconds of cpu time

on the network when computing the two-terminal to solve the same problem by completely enumer-
reliability except that there be a source and terminal ating all 215 = 32 768 possible combinations of path
node. Thus, the exact two-terminal reliability can lengths.
be determined for cyclic as well as acyclic networks. This problem can also be considered as a two-
Network reliability problems are known however to terminal reliability problem where the probability
be _P-complete (ref. 1) where _P is a class of that each arc is operational is 0.4. The two-terminal
counting problems analogous to NP. Hence, _P- reliability of the network, as shown in table 5, is
complete problems are at least as difficult to solve, if 0.3047540654. Shogan gives the following bounds on
not more difficult than NP-complete problems such the two-terminal reliability: LB = 0.1971 and UB =
as the traveling salesman problem (ref. 1). 0.3527.

The next example is a cyclic network, shown in The last example, shown in figure 35, is a large
figure 34, presented by Shogan (ref. 16). Two loop network with 20 nodes and 38 arcs that was also pre-
constructs, at nodes B and D, can be identified in sented by Kleindorfer (ref. 14). The two-terminal
the original network structure, reliability of this network, in which each arc is op-

erational with probability 0.9, can be determined by

letting each arc take on lengths < 0, 1 > with cor-

responding probabilities <0.9, 0.1>. Using the pro-"_ _ gram with these parameters, the s-t reliability of this

network is found to be 0.98612801. The subnetwork

tree generated for this problem had 15 levels. A max-
_._ imum of 15 subnetworks were stored at any given

time, and 32 767 total subnetworks were generated.
The program required 49.21 seconds of cpu time to

solve this problem. For this problem, complete enu-meration would not be feasible since 238 or approxi-
mately 2.75 × 1011states of the network would be in-

Figure 34. Shogan network (ref. 16). .. dividually examined to find the shortest path length
through each. Based on the time to solve a portion

For this example, the n-tuple of lengths for each of this network by complete enumeration, approxi-
arc is < 0, 2, 4 > with corresponding probabilities mately 280 000 000 seconds of cpu time (or approxi-
<0.4, 0.2, 0.4>. The exact distribution of the shortest mately 9 years) would be required to solve the large
path length through this network is given in table 5. Kleindorfer network.
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and allows exact solution to large network problems
that were previously analyzed only by approximation
techniques.

Conclusions

The structural factoring approach allows the ex-
act distribution of the shortest path length through
a stochastic network to be" determined. Applica-
tion of structural factoring to fan, loop, general loop,
and double loop constructs significantly increases the
tractability and applicability of the approach, since
complete enumeration of all states is not necessary
to simplify these constructs. Although there are net-
work architectures that do not initially contain these
special constructs, factoring can often be applied lo-
cally to produce subnetworks that do contain such
constructs. Hence, this approach extends the com-
putational range, especially for cyclic networks, to
larger and more complex networks than have previ-
ously been solved with other exact methods. Struc-
tural factoring can also be applied to find the distri-
bution of the critical path length in acyclic networks
and the two-terminal reliability for a network.

Although the technique of structural factoring is
theoretically unconstrained, the size of the network

Figure 35. Large Kleindorfernetwork (ref. 14). that can be solved with the algorithm is restricted
by computational resources. In the worst case, the

Comparison Between Structural Factoring computational effort can grow exponentially with the
and Complete Enumeration size of the problem, which is indicative of the NP-

complete characterization of the stochastic network
The effort required to solve the examples pre- problem. Computational experience with the struc-

sented in the previous sections with structural fac- rural factoring algorithm has nonetheless been en-
toring is compared in table 6 with the effort re-

couraging. Moreover, the ability to solve certain
quired with complete enumeration. As the size of nontrivial problems exactly can serve as a baseline
the network in terms of number of nodes and arcs for assessing the accuracy of various approximation
increases, the total number of subnetworks and cpu schemes proposed to solve larger problems.
time increases in an exponential manner as expected

for an NP-complete problem. However, the struc- NASALangley Research Center
tural factoring approach is dramatically superior to Hampton, VA 23665-5225
the straightforward complete enumeration approach January 3, 1991

Table 6. Comparison Between Structural Factoring and Complete Enumeration

Structural factoring Complete enumeration

Network (n,m, k) a No. of subnetworks cpu time, sec No. of states cpu time, sec
Fulkerson (4,5,3) ........... 4 3.5 243 1.03

Kleindorfer crossing (6,8,5) ...... 31 3.6 390625 57.21

Shogan (7,15,3) ........... 1528 8.19 14 348 907 6048.89

Large Kleindorfer (20,38,2) ...... 8191 49.21 2.748779 x 1011 2.8 x l0 s

a n is the number of nodes in the network, m is the number of arcs, and k is the number of "lengths" for each arc.
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